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Incremental Length Diffraction
Coefficients for the Shadow Boundary
of a General Cylinder

1 Introduction

In the physical theory of diffraction (PTD) [1], the scattered field is divided into a physical
optics (PO) field and a nonuniform (NU) field. The PO field for perfectly electrically conducting
(PEC) objects is obtained from an integration of the PO current over the object. One reason for
the limited accuracy of the PO field is that the PO current fails to closely approximate the exact
current in the vicinity of shadow boundaries and on the shadow side. A significant improvement
in the accuracy of the computed fields can therefore be obtained by finding good approximations
for the fields radiated by the NU currents near the shadow boundary. Approximations for these
NU fields can be obtained by first integrating the product of the free-space Green’s function and
the approximated NU currents excited on a strip of differential width transverse to the shadow
boundary of a canonical two-dimensional (2D) scatterer that closely conforms locally to the shape
of the actual scatterer in the vicinity of the shadow boundary. The differential fields obtained
by this integration are known as the incremental length diffraction coefficients (ILDC’s). Once
the ILDC’s are determined, the NU fields are obtained by integrating them along the shadow
boundary of the actual scatterer.

Although for some time ILDC’s have been available for the shadow boundaries of two-
dimensional (2D) PEC scatterers with sharp edges such as the wedge [2], [3], [4], [5] it is only
recently that they have been obtained for convex, smoothly-curved cylinders. Hansen and Shore
obtained ILDC’s for the shadow boundary of a circular cylinder [6] and a parabolic cylinder 7]
using an earlier form of the method of this report, and presented the basic ideas of this report in
[8]. Yaghjian et al. [9] obtained shadow-boundary ILDC’s for a convex cylinder by approximat-
ing the far fields radiated by the NU shadow-boundary currents of a convex cylinder by the far
fields radiated by the NU shadow-boundary currents of circular cylinders, and then substituting
the approximated fields into general expressions [5], [9], [10]. These approximate ILDC’s were

received for publication 1 Aug 1997




then modified to account for a varying radius of curvature in the shadow region.

The purpose of this report is to show how ILDC’s can be obtained for the NU currents near
the shadow boundaries of PEC 2D convex cylinders of general cross-section and smoothly varying
radius of curvature, by approximating and integrating the NU currents. We derive asymptotic
expressions for the ILDC’s that are rapidly calculable and usable in general-purpose computer
codes. This method of obtaining convex-cylinder shadow-boundary ILDC’s is an alternative to
the field substitution of Yaghjian et al. [9] described above. The field substitution method,
because it works directly with fields, is perhaps simpler than the method of this report. For
applications in which heightened accuracy is important, however, the NU current approximation
and integration method described here may be preferable because it yields more accurate ILDC’s
than does the field substitution method [11].

The report is organized as follows. In Section 2 we obtain the Fock approximations of the
NU currents on a convex cylinder. These approximations are validated by specializing them
to the cases of a circular and parabolic cylinder and showing that the Fock approximations to
the NU currents closely match the exact NU currents. In Section 3 we show how the ILDC’s
corresponding to the Fock current approximations of Section 2 can be obtained efficiently by
using an accurate and rapidly calculable approximation to the integral defining the ILDC. In
Section 4 we show how to determine the canonical 2D cylinders from the actual 3D scatterers.
As an example of obtaining and using shadow boundary ILDC’s we show results obtained for
the field scattered by a PEC sphere illuminated by a plane wave.

2 Fock Currents on a Convex Cylinder

We now derive simple expressions for the Fock currents [12] on a convex perfectly conducting
cylinder illuminated by an obliquely incident plane wave (see Figure 1). These expressions
are determined by applying the procedure in [13] to the Fock currents that are valid for normal
incidence. The Fock currents for normal incidence are determined from expressions in [14]. Some
of the results derived in this section are available in the literature, for example [15], [16, pp.83-
86], and [14]. We note, however, that the Fock currents for oblique incidence in the illuminated
region are given incorrectly in [15] and [14], and are not given in [16], and there are other errors
as well. In the following derivations of the Fock current approximations, the cylinder axis is
parallel to Z, and the unit normal vector for the cylinder is denoted f. p, denotes the radius
of curvature of the curve that describes the cylinder cross-section in a plane perpendicular to 2,
and it is assumed that p, is a continuous function. The incident plane wave propagates in the
direction ki. An e~** time dependence is assumed throughout with w > 0.

2.1 The Fock Current for TE Oblique Incidence

In this case the incident electric and magnetic plane-wave fields are given by

ETE,z'(r) — —Zot%i eiki-r (1)




~~~~~

Shadow Boundary

Figure 1: Cross section of a convex cylinder with smoothly varying radius of curvature.

and

HTE,i(r) — _éi eiki-r (2)

where Z, is the impedance of free space, k' = kki, and ki = —%sin 6 cos ¢'—¥ sin 9% sin ¢*—% cos 6"
is the propagation direction of the incident plane wave. Moreover, 6 and 3; are the spherical
unit vectors corresponding to the direction (6%, ¢'). We let r = z% + y¥ + 2% denote a general
point and let ro = zX + y¥ denote a point in the plane z = 0.

In the special case of normal incidence (§* = 90") all fields are independent of z and the
direction of propagation of the incident field is ki = kin = —%cos¢’ — §sin¢’, so that the
incident magnetic field is given by HTZ4"(ry) = ze* k™o The Fock current in the illuminated
region can be written as [14, p.1666]

1/3
KTE,n(rO) = h X HTE,i,n(ro) G ( I:kpnz(rO):l fi - f{i,n) (3)

where G(z) = €*°/3g(z), with g(z) being the Fock function defined in [17, pp. 63-64]. These Fock
functions (as well as f(z) and F(z) defined below) are most easily obtained by interpolation of
tabulated values for |z] < 3, and by use of asymptotic expressions for |z| > 3. Note that
h x HTE: ”‘(ro) = {,ek""To where t, is the tangent unit vector that is perpendicular to Z and
satisfies t, = f x 2. Since i x HTE#"(r;) is simply one half of the PO current at the point ro,
the Fock current (3) can also be written as

1/3
KTE™(ro) = KTE PO (o) G([ﬁp—zi@] nk”) (4)




Equation (4), valid for normal incidence, will now be used in conjunction with the procedure
in [13] to obtain the Fock current for oblique incidence. According to [13, Eq.(13)], for oblique
incidence the current can be expressed as

icosft 0

TE 1
K5(r) = (t sin 6 +st1n9’ ot,

) etrrend [K;::E,n(ro)] k—k sin 8 (5)

where [KTEn( )]k . indicates that k must be replaced by ksin#’ in the expression for
~—+ K SI

K" (ro). In [13] it is also shown that applying (5) to the PO current for normal incidence
yields the PO current for oblique incidence. Thus, by applying (5) to (4) we obtain the following
expression for the Fock current for oblique incidence

1/3
KTE(r) = % KTE-FO r) [G([k/)nz(ro)] f - f(i,n)]
k—k sin 8%

) . /3
L 1cos0 . oot | o TEPOR kpn(ro) R [in
e [{ (x ) ([ 2 ok sk sin 6 ©

Where KTEF O( ) = 2 fi x HT5(r) is the PO current for oblique incidence. Using the relation

5t—n—n k™ = kin .1, /p,, one finds that for large kp, the second term of (6) is negligible compared

to the first term of (6). Since sin 6 fi - ki™ = i - k?, we find that

[(klon<r0)>l/3 ﬁ . l}i,n} — (kpg(r))lls n- f(z' (7)
2 k—k sin 6% 2

o) = £2E0) ®)

)
sin® 6*

is the radius of curvature of the geodesic that forms the angle 6* with the z axis. Consequently,
in the illuminated region, the Fock current for oblique incidence is given by

) : (9)

The total current approximated in (9) is the sum of the PO current and the nonuniform (NU)
current. By defining the modified Fock function

G(z) = G(z) — 2 (10)

where

E)

1/3
K7E(r) = & x HTB4(r) G([kpz(r)] A

and using G instead of G in (9) we obtain the Fock current approximation for the TE NU current
in the illuminated region

1/3
KTENU(r) = a x HTEA(r) G([kp;(r)] n- ﬁi) : (11)

4




Since A-ki =0 everywhere on the shadow boundary, the Fock current at the point ry on the

shadow boundary is '
KTE(I‘sb) = flsb X HTE’z(rsb)G(O). (12)

The asymptotic formula
v -
G(z) =2+ 555 T 0(z7®), z— —o0 (13)

shows that in the illuminated region far from the shadow boundary the Fock current is

TE(r) =2 h x HTB#(x iﬁXHTE’iSr) 0 —).
K7E(r) =2 fi x (r) + kpg(r)(ﬁ.kz-)ﬁ ([kpg(r)]z(ﬁki)ﬁ) 1

In (14) the first term is the PO current and the second term is the first higher-order optics term.
Now consider the Fock current on the shadow side of the cylinder. For normal incidence the
formulas of [14, p. 1666] show that the Fock current is

~

1/6
KTE’n(I'o) = Yoy - ETE,i,n(rst) eiksn(ro)g(xn) <pn(r360)> £,
Pn(rO)
where rg is the point of the shadow boundary that lies in the z = 0 plane, Yo = 1 /Zo is the
admittance of free space, N is the normal at the shadow boundary, s,(ro) is the distance along
the cylinder from the point ryo on the shadow boundary to the point rq, and

13 .
T, = (-;i) / —-dl-, (16)
Tsbo pn(sn)z/s

is the Fock parameter (the integration in (16) is on the surface of the cylinder). Moreover, t, is
that unit tangent vector to the cylinder which is perpendicular to z and is equal to k*" at the
shadow boundary. On the illuminated side the unit tangent vector was defined as t, = f x 2,
and the two unit tangent vectors on either side of the shadow boundary are therefore not always
equal at the shadow boundary (in some cases they are opposite). However, the unit tangent
vector in the illuminated region was used only in intermediate steps of the derivation, and it
does not appear in any of the final formulas for the current in the illuminated region. Note also
that Yy fig - ETE ™ (rg0) = +eX"" T gince the incident electric field is always parallel to the
normal at the shadow boundary.

To obtain the Fock current for oblique incidence, we insert (15) into (5) and note that (5)
remains unchanged when t, is reversed. It is found that for large kp,, the terms involving the
derivative of g(x,) or the derivative of [p,(rsp0)/ pn(ro)]l/ ® are negligible compared to the two
other terms that result when (15) is inserted into (5). Thus, we have

(15)

1/6
—1kz i [ 7,n n\Lsb
KTE(r) =Yoe Frcos? [nSb (ETES (erO)] k—k sin 6% (p ( - 0)) g ([xn]k—»ksine")

Pn(ro)
. L 3 & 0 ..op
t, in iksin6*sn(To) QZCOS . iksin6*sn(ro) . 17
( e + k sin 6 atne (17)

5




The last factor in (17) simply equals (&, sin 6% — % cos §?)e*sind*sn(ro) = t,eiksind'sn(ro) wwhere t,
is the tangent along the geodesic that forms the angle #* with the z axis, as shown in Figure 1.
By unrolling the cylinder one finds that sin 6%s,(ry) — cos 91(2 — zsb) = sG(r) where s,(r) is the
distance along the geodesic from the point ry = z% + y¥ + 242 on the shadow boundary to
the point r in the shadow region. Thus,

o~ tkz cos§* [ eiksn(ro) eik"'"-rsbo] = giksg(r) eiki.rsb (1 8)
k—+k sin 8*

showing that

— ﬂsb . ETE,i(rsb)eiksg(r). (19)

—-.. l . . , N .
e itkzcos 8 eﬂcsm& sn(To) [nsb . ETE,1,n(rS )]

k—ksin gt

From the relation (8) between p,, and p, and the formula ds,, = sin 'ds, we find that [z, ];—xsme:

simply equals »
k T ds,
_(k 08y 2
& (2) Lo tom (20)

where the integration is performed along the geodesic that starts at r,; and ends at the point
r in the shadow region. Inserting all these results into (17) proves that the Fock current in the
shadow region is given by

1/6
. i iks s :
KTE(r) =Y, iy - ET5 (rss) e k g(r)g(xg) (EZ((_I';)) E ()
g

when the incident field is the plane wave in (1) and (2).
At the shadow boundary the expression in (21) reduces to

~

KTE(rsb) = Yong - ETE’i(rsb) 9(0) k' (22)

which can be shown to be in agreement with (12) by use of g(0) = G(0), (%i = N Or ¢ = —Ng,
and tg & = ki. For large positive values of its argument the Fock function g(z) is given by [17,
p- 64] ~

ﬁ;weSi"/G

@)~ B LAY

where f; is the negative of the first zero of the derivative of the Airy function. Substituting (23)
into (21) gives us the first creeping wave on the convex cylinder

z — 00, (23)

TE TE oo (1) eﬁl:cgesm/e o (r b) 1/6
KTE(r) ~ Yy figy, - ETE (1) etFsolr : 95) t,. 24
() ~ Yo fir (ra) BrAi(—B) ( pe(r) ! 249




2.2 The Fock Current for TM Oblique Incidence

In this case the incident electric and magnetic plane-wave fields are given by

A1

ETM,i(r) —_9 ez’k'?r (25)

and ' i
HTM,z(r) =Y ¢ ezk‘-r (26)

where Y; is the impedance of free space. For normal incidence the electric field in (25) is given by
ETM:#7 (pg) = 2™ ™0 and [14, p.1666] shows that the Fock approximation to the total current
on the illuminated side of the cylinder is

1/3 ~1/3
I{ZTM’n(I'O) — ’LYb % . ETM,i,n(rO) F(l:kpnz(I'O)} A - ki,n) I:kpnz(ro)] (27)

where F(z) = '=’/3f(z) and f(z) is the Fock function defined in [17, pp. 63-64]. Since the PO

current for normal incidence is
KTM,PO,n(rO) =92A X HTM,i,n(ro) — _2}/0 fi- ki,n e‘ik""'l‘o % (28)

we can write the Fock current (27) as

K™m(ro) = 2KIM™"(ro)
. 1/3 1/3 -1
_ —%KTM’PO’"(ro)F(lkp—"z(ri)] ﬁ.km) ([%‘ﬂ] ﬁ.k"’”) (29)

According to [13] the current for oblique incidence can be determined from the current for
normal incidence through the equation

KZTM(I') — e—‘ikzcos 6t [I{Z‘M,n(ro)] (30)

k—sk sin 8%

and in [13] it is also shown that applying (30) to the PO current for normal incidence yields the
PO current for oblique incidence. Inserting the Fock current (29) into (30) shows that the Fock
current for oblique incidence is

K™ (r) = 2KT™™(r) = —i & x HTM#(r) F((@) v fi - 1‘&) ([’“"_92("2] 1/3ﬁ : fe’) B (31)

where we have used (7) and inserted the expression KT™FO(r) = 2 fi x H*M#(r) for the PO
current. Alternatively, we can insert the Fock current (27) into (30) to get

K™(r) = S—;}—% 2 - ETM*(r) F([—k—%{z] " fi- Ri) [E—%(r—)] o (32)

7




where we have used the formula

5 TM,

—ikzcos 0 [» EFTMin - z-E ' (I')

e [Z E (ro)] k—ksingi sin 8¢ ) (33)

Since the total current approximated in (31) or (32) is the sum of the PO current and the
NU current, by defining the modified Fock function

F(z) = F(z) — 2iz (34)

and using F instead of F in (31) or (32) we obtain the Fock current approximation for the TM
NU current in the illuminated region

KTMNU(p) = ETMNU(p)
= —idx HMi(r) F‘( [k";(r)r/3ﬁ-12i> ([k”;(r)]l/sﬁ-fd) h (35)

or . 1/3 -1/3
KTMNU () = ;{%@ 5 - ETMi(r) F([kp_gz(ﬂ} ﬁ.f(i) [kpgz(_r)} ) (36)

At a point r, on the shadow boundary both n - ki and A x HTM: equal zero, and we find
that

A x HTM. Y; ikirg A - HTM.i

AxH ) |, Yo e, Ba M Pre) o, (37)
N e o N sb
n-k sin N - @ sinf:

so that the Fock current (31) at the shadow boundary becomes

; s ETM,i ~1/3
KTM(I'sb) = QI{EM(er) =% v F(O) HSbA ,'H (rsb) (kpg(rsb)>
ﬁsb y ¢ sin §° 2

(38)

which is seen from the plane-wave expressions (25) and (26) to agree with the result obtained
from (32).
For large negative values of its argument, the function F(z) is given by [17, p. 64]

F(z) ~ 2iz + 21? +0(z7%), z— —oo, (39)

so that the current in the illuminated region away from the shadow boundary is

TH (1) ~ 9 5 x HPMA(r) - BXETE — 40
K™ (r) ~2nx (r) kp, (r) (ﬁ.f{i)z)’ * ((k/’g)z(fl'ki)fs) 1o

in which the first term is the PO current and the second term is the first higher-order optics
term.




On the shadow side of the cylinder, the Fock approximation for normal incidence to the total
current is [14, p. 1666]

KT%(r0) = i f(z)

eksn(ro) By HTM’i’n.(rsbo) (pn(rsbo))l/e (kpn(r0)>_1/3 (41)
W) pn(ro) 2

where the Fock parameter z,, is defined in (16). Inserting (41) into (30), and using (18), we find
that the Fock current for oblique incidence is

KTM(x) = i f(a)eot0) 22 B ) (pg(m))w (kpg(r))“1/3 (42)
’ ? By & sing \ Po(r) 2

with z, given by (20).
At the shadow boundary, the value of the Fock current (42) is

R A7, .
fig + @ sin & 2

KT (r,) = i 5(0) 22 L ew) ( kﬂg(rsb)) '1/3 (43)

which agrees with the result in (38) because f(0) = F(0). For large positive values of its
argument, the Fock function f(z) is given by [17, p. 64]

e—-i'rr/B el zedin/6

f(m) ~ Ai’(—al) )

T — 400, (44)

where a; is the negative of the first zero of the Airy function. Substituting (44) into (42) gives
the first creeping wave on the convex cylinder

e—im/3 go1zge® /O jiksy(r) figp - HTM,i(rsb) (,og (l‘sb)) 1/6 (kpg(r)) -1/3 (45)
Ai'(—cn) fiy- ¢ sindi \ po(r) '

I{TM ~ 7
) .

2.3 Examples

We now specialize the Fock current approximations for a general convex PEC cylinder obtained
above to the cases of a circular and parabolic cylinder. Consider first a circular cylinder of radius
a illuminated by the TE plane wave given by (1) and (2). For the Fock current approximation
to the TE NU current in the illuminated region we obtain from (11)

KTE’NU(G,, ¢’ Z) ~ [_a) sin 01’ i % cos 91’ sin(qﬁ _ ¢z)] e—ika sin 6° cos(¢—¢f) e—ikz cos 6t

. ai\ 1/3
G [— (’““2“") cos(qs—qs")} . le—dll<T/2 (46)
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Figure 2: Amplitude of KfE’NU(a, ¢, z) for circular cylinder, ka = 60, ¢* = 180°, §* = 90°.

while for the shadow region (21) yields

KTE(a’ o, z) - [_& sin §° + % cos 0{] eikasinef|¢fi7r/z-¢| e~ ikz cos §*

d . i\ 1/3
g[(ka&ne) 6 £7/2- ]

: , m2<|p—¢| < (47)

where the & corresponds to the shadow boundary at ¢* + 7/2, respectively. For illumination by
the TM plane wave given by (25) and (26), for the illuminated region we obtain from (35)

F [— (%ka sin Oi) e cos(¢ — ¢i)}

(%ka sin 9") e
¢ — | <m/2  (48)

. a — Py T} — At —3 i
KTM’NU((Z, ¢’ 2’) ~izYy e tkasin 8* cos(p—¢*) e ikz cos @

while for the shadow region (42) yields
f [(%ka sin ') "7° ¢ £ 72 — ¢1]

(%ka sin 01') e
©/2 < |¢— ¢ <. (49)

. s pigi T i
I{ZM(G, ¢, Z) ~ ZYo 6zkasm9 |¢ttm/2—9)| e tkz cos 6

In Figure 2 we have plotted the amplitude of the approximate TE NU current,

KTENU (g #, z), for a circular cylinder with ka = 60 obtained from (46) and (47) with ¢ = 180°
¢ .

and §* = 90° (normal incidence) along with the amplitude of the exact current obtained from the
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Figure 3: Amplitude of KT¥NV(a, ¢, z) for a circular cylinder, ka = 60, ¢ = 180°, ° = 30°.

eigenfunction expansion for scattering from a circular cylinder. The amplitude is discontinuous
at the shadow boundary at ¢ = 90° because the TE PO current is discontinuous there, and
hence when subtracted from the continuous total current gives a discontinuous NU current. The
approximate current is seen to closely fit the exact current except for the ripple behavior of the
exact current in the deep shadow region in the vicinity of ¢ = 0°. This ripple behavior is the
result of interference between the dominant creeping waves launched at ¢ = £90° both of which
are present in the exact eigenfunction expansion of the current, whereas the approximate current
in the range 0° < ¢ < 180° contains only the dominant creeping wave launched at ¢ = 90°.
Much the same remarks apply to the comparison of the plots in Figure 3 of the approximate and
exact z component of the TE NU current for oblique incidence (6° = 30°).

In Figure 4 we have plotted the amplitude of the approximate TM NU current,
KTMNU (g & z), obtained from (48) and (49) for normal incidence, along with the amplitude
of the exact current. Here there is no discontinuity at the shadow boundary because the TM
PO current is zero in the illuminated region at the shadow boundary. The approximate cur-
rent closely matches the exact current everywhere. No ripple behavior is observed here for the
exact current because the creeping waves attenuate much more rapidly for TM than for TE
illumination.

Next we consider the parabolic cylinder with focal length h. The currents are given in
terms of the parabolic cylindrical coordinates (¢,7,2) discussed in [17, ch. 7]. The surface of
the scattering cylinder is given by n = m1 = V/2h. The derivations of the Fock currents are
straightforward but somewhat lengthy. Expressions given in [17, ch. 7] are used, as well as the
formula p, = (€2 + 7?)*/2/n, {for the radius of curvature of a parabolic cylinder in the plane
normal to the z-axis. We give only the results here. For illumination by the TE plane wave given
by (1) and (2) with 0 < ¢° < 7, we obtain from (11) the Fock approximation for the NU current

11
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Figure 4: Amplitude of KZ7MNU (g 4. z) for a circular cylinder, ka = 60, ¢° = 180°, §* = 90°.

in the illuminated region

. . 2_2
o £ cos @ + ny sin @* ~ikhsin 8 cos ¢"£—_ﬂl-+25in A
K*NY(¢,m1,2) ~ [é sin 6 + Z cos 0’§ ¢'+ msin g ] ( i ”1)

(€2 +np)v/?
‘e_ikzcosei é l(kh Sin 9,‘) 1/3 711 COS ¢z — ESin (]52
M

] , E>mootd’.  (50)
For the shadow region, (21) yields

N . . i —1 : 2 ' '
KTE(é-’nhz) ~ [E sin 0 -+ % cos 92] etkhsm& [ln(nl (—€++/€2+72 cot($ /2)) ény 2, /52+7112] e—-zkzcos&‘

1/4
g [(khsinﬁi)llsln (ngl(—§+\/£2+n§cot¢i)} \/s;—qs' (521%97%) , E<mcotdt. (51)

It can be convenient to replace the variable ¢ which ranges from —oo to +0co with a generalized
angle variable ¢, (not to be confused with the polar angle ¢) defined by ¢, = tan=*(¢/n,) (or &€ =

m1 tan ¢,) which ranges from —m/2 to 7/2 with the shadow boundary given by ¢, sp = 7/2 — ¢'.
In terms of ¢, (50) and (51) become

KTENY (g kh,2) ~ [é sin 0° + % cos 6] cos @, |(sin ¢* + cos ¢’ tan ¢g)]
.~ khsing’(cos ¢! (tan® $~1)+2sin g’ tany) ,~ikzcosd’ (¥ [(kh sin Hi) . (cos ¢' — sin ¢ tan ¢,)|

¢y >7[2—¢ (52)
and

KTE(6,, kb, 2) ~ [Esin 0 + oo ] ¢bant{nl(=taméyioe 1) cx@t /2] tamtycon =)
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| cos ¢g]1/2

—ikzcost’ g [(kh sin 9")1/3 lp [(— tan ¢, + | cos </>g|_1) cot ¢i]] Vsing
¢, <T/2— . (53)

For illumination by the TM plane wave given by (25) and (26), in the illuminated region we
obtain from (35) or (36)

—ikhsin (8-n? e
KTMNU(€ ny,2) = 0¥y (€2 +7712)1/_2 o Hheme (CM w7 tiend ﬂl)
M

F [(kh sin 0i)1/3 77t (91 cos ¢' — € sin ¢i)]
(kh cos 6°)1/3

_e—ikz cos @t

, £>nicotd’ (54)

while in the shadow region we obtain from (42)
I{TM(é m z) ~ ZYO eilchsin ot [ln('nl—l(—§+\/§2+nf cot(¢i/2)) _5771—-2 /€2+nﬂ e—z’kz cosbf

f [hsing)P1n (¢ + VE T aieot)]

\/sin ¢*(kh sin 6¢)1/3 e +n?

In terms of the generalized angle variable ¢, these expressions are respectively

3/4
) , &< mcot ¢i- (55)

I{ZM‘NU(qﬁg, kh, z) s ZYE)l oS ¢g|e—z’khsin0"[cos¢i(ta.n2 —1)+2sin ¢* tan¢g] k2 cos 6

F [(kh sin §')/® (cos ¢ — sin ¢' tan ng)]

(Khsin 6173 , $z7/2-¢ (56)

and
I{Z‘M(qsg’ kh, 2) ~ 1Y, eikh sin9"{1n[(—tan¢g+|cosngI'“l)cot(¢i/2)]—tan¢g|cos¢g|‘l}

£ [(khsin )% In[(~ tan ¢, + | cos 6| ™) cot 7]
V/sin ¢*(kh sin 67)1/3 ’

In Figure 5 we show plots of the approximate TE NU current K, {TE’NU(qbg, kh, z) for a parabolic
cylinder with kh = 60, obtained from (52) and (53) with ¢* = 30° and ¢ = 90° (normal
incidence). Also plotted is the exact current obtained from [17, Eq.(7.47)] using expansions
given in [18] and [19]. The approximation, while not quite as good as for the circular cylinder,
is still very close.

In Figure 6 we show a comparison of the z component of the approximate TE NU current
for the same parabolic cylinder with ¢* = 30° and ¢° = 30° (oblique incidence), and the exact
current obtained from [17, Eq.(7.47)] together with [13], [18], and [19]. Again the approximation
is quite good throughout the range.

Plots of the approximate TM NU current KXM:NVU (¢, kh, z) obtained from (56) and (57) for
normal incidence and of the corresponding exact current obtained from [17, Eq.(7.12)] and [18]

. e—ikz cos §*

b, <2~ (57)
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Figure 6: Amplitude of K75NV(¢, kh,z) for a parabolic cylinder, kh = 60, ¢ = 30°, ¢ = 30°.
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Figure 7: Amplitude of KgM’NU(ng, kh, z) for a parabolic cylinder, kk = 60, ¢ = 30°, 6 = 90°.

are displayed in Figure 7. Here the approximation, while acceptable, differs somewhat from the
exact current especially in the shadow region, primarily because the value of the TM current
at the shadow boundary ¢, = 60° is significantly less than the exact value. The reason for
this discrepancy is that the Fock current approximation is derived under the assumption that
the derivative of the radius of curvature at the shadow boundary is equal to zero, a condition
satisfied by the circular cylinder but not by the parabolic cylinder except when the shadow
boundary is at the vertex of the parabolic cylinder. The discrepancy between the exact and
approximate values at the shadow boundary of the parabolic cylinder is present in Figures 5 and
6 as well, but to a lesser degree.

3 Integrating the Fock Currents to Obtain ILDC’s

We will now show how the ILDC’s corresponding to the Fock currents presented in Section 2
can be obtained efficiently. The ILDC’s for the shadow boundary of a convex cylinder represent
the fields radiated by the nonuniform Fock currents on that cylinder. Specifically, the far field
radiated by a strip of thickness dz’, which is described by the curve C on the cylinder, is given
by

oo 2 ik €T . o . o
dENU(r) '~ _Z_Z__’;r_:__\/gj e—zkr.rc(s) [KNU(917¢1,5) — P KNU(G'L,(#,S)] dS, (58)
c

where # is the direction to the far-field observation point, rc(s) is the parametric representation
of C, and K™V is the nonuniform Fock current. In the illuminated region, the curve C is normal
to the shadow boundary. In the shadow region, C is the geodesic whose angle with the axial
direction is 6, as shown in Figure 1.
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In general it is not possible to evaluate the integral (58) in closed form. However, as we
will now demonstrate, an accurate and rapidly calculable approximation to this integral can be
obtained. '

3.1 Quadratic Polynomial Approximations of the Amplitude and
Phase of the ILDC Radiation Integral

Begin by considering one of the components of the electric field dE in (58) and write this com-
ponent as .
dE(r) = / " A(s)e= P, (59)
Sa
where the amplitude A(s) and the phase P(s) are functions of the angles of incidence and
observation. The amplitude and phase functions are determined from the nonuniform current
and the far-field Green’s function occurring in (58). For convenience, we allow the amplitude
A(s) to be complex. Moreover, the expressions in Section 2 for the Fock currents and the
factor e~*F¥c(s) determine the unwrapped phase of the integrand, so that the function P(s)
1s continuous except possibly at the shadow boundary. Thus, the phase function P(s) is not
restricted to a finite interval of length 2.
We can divide the integration in (59) into subintervals and have

I Y A(s)ePEds = 3 / T A(s)emPC) ds (60)
Sa ]=1 SJ'

where 81 = 54, Sp41 = 85, and s; < s;41. The form of the functions A(s) and P(s) leads one to
assume that these functions can be accurately approximated by quadratic polynomials of s in
each of the intervals s; < s < s;;; when these intervals are chosen appropriately. Hence,

i+ : Sj+1 -
/" IA(S)e_zP(S)dS g/J (6032+Cls+cz)e—1(css2+c.;s+c5)d3 (61)
SJ' SJ'
where cg, ¢1, €2, 3, ¢4, and cs are constants independent of s.

These constants will be determined such that the quadratic polynomials fit A and P at the
endpoints s; and s;4; and at the midpoint s;11/2 = (s; + sj41)/2:

A(8) = cos® + 15+ ¢, for s= Siy S = $j41/2, 8 = Sj41, (62)
which gives
Alsjrr) — A(sj) |, 841A(8511) — 8;A(s5) , A(sj41/2)
co = 2(8;41 + 3; ! +4 —4 , 63
° (3414 53) (sj41 — 55)° (8541 — 85)° (8541 — ;)2 (63)
A(s;y1) — Als;
€ = ( J+1) ( J) —CO(Sj-i-l +Sj), (64)
Sj+1 = 54
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Figure 8: Circular cylinder illuminated by a TE plane wave

and A A
¢, = 2 (s3) = 5iA(ss41) + 083841 (65)
Sj41 — Sj
Similarly, .
P(s) = css’ +css+¢5, for s =55, $=5j11/2, 5 = Sj1 (66)

and we find that cs, cs, and cs are given by (63), (64), and (65), respectively, with A replaced by
P. These expressions for the constants co, ¢1, €2, €3, €4, and cs are well behaved for all functions
A and P that are continuous in the interval s; < s < s;41. In principle we could let P(s) be
continuous for all s except at the shadow boundary. However, in practical calculations we permit
P(s) to have discontinuities that are multiples of 27 at the points s;.

In the appendix we have shown how the integral on the right side of (61) can be evaluated in
closed form in terms of the Fresnel function. Thus the ILDC’s are expressed as a finite summation
involving the Fresnel function and the values of the amplitude and the unwrapped phase of the
integrand in (58) evaluated at the points s;.

3.2 Numerical Verification of the Quadratic Approximations

We will now use a numerical example to verify the quadratic approximation of the phase and
amplitude in (61). We consider the far field radiated by the NU current on the circular cylinder
shown in Figure 8. The incident field is a plane TE wave with H: = €**, and only the NU
current in the angular region 0 < ¢ < 7 will be taken into account. The magnetic far field for
this NU current can be written as HNUTE(r) = FNUTE(g)e Vkr, where the far-field pattern

is given by
FNUTE(g) — /

Sa

Sb

A(s)e™ Pl s, (67)
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Figure 9: Amplitude of the exact nonuniform TE current on circular cylinder for ka = 60.

with s, = 0, s =,

A9) = == KZPTE ()] cos( - ), (68)
and
P(s) = kacos(¢ — s) — Phase(KéVU’TE(s)) (69)

where Phase(Kév UTE(5)) is continuous (i.e., not modulo 27) apart from the discontinuity at the
shadow boundary.

The amplitude and unwrapped phase of NU current are shown in Figure 9 and 10, respectively,
for ka = 60. Notice that both the unwrapped phase and the amplitude of the NU current have
discontinuities at the shadow boundary, and that the unwrapped phase is almost linear on the
shadow side.

Figures 11-14 show the exact values and the quadratic approximations of A(s) and P(s) for
¢ = 0° and ¢ = 90°. The number of segments n in (60) is 6 and s; = wx(; — 1)/6, so the
shadow region 0 < s < 7/2, as well as the illuminated region 7/2 < s < 7, are divided into
three subregions. Thus, the length of the subintervals is 5A. To better illustrate the accuracy
of the quadratic phase approximation, we have introduced discontinuities in the phase at the
endpoints s;. We see that the quadratic phase approximation is excellent for both these angles
of observation, but that the quadratic amplitude approximation deviates somewhat from the
exact amplitude for ¢ = 0°.

The quadratic approximations can be improved by using unequal spacing with a greater
density of points taken in the region of s that contributes most strongly to the far field at ¢.
As an example, this is done in Figures 15 and 16 for ¢ = 0° where the endpoints are given by
s1 = 0, sp = 602, s3 = 80°, s4 = 90°, s5 = 105°, s¢ = 135°, and s; = 180°. The quadratic
amplitude approximation is clearly better in Figure 15 than in Figure 11 with equal spacing.
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Figure 10: Phase of the exact nonuniform TE current on circular cylinder for ka = 60.

Figure 11: Exact values and quadratic approximation of A(s) for n = 6, ¢ = 0°, and ka = 60.

The endpoints are s; = 7(j —1)/6.
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Figure 12: Exact values and quadratic approximation of P(s) for n = 6, ¢ = 0°, and ka = 60.
The endpoints are s; = 7(j — 1)/6.
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Figure 13: Exact values and quadratic approximation of A(s) for n = 6, ¢ = 90°, and ka = 60.
The endpoints are s; = n(j — 1)/6.
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Figure 14: Exact values and quadratic approximation of P(s) for n = 6, ¢ = 90°, and ka = 60.
The endpoints are s; = w(j — 1)/6.
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Figure 15: Exact values and quadratic approximation of A(s) for n = 6, ¢ = 0°, and ka = 60.
The endpoints are s; = 0, s = 60°, s3 = 80°, 54 = 90°, 55 = 105°, s¢ = 135°, and s; = 180°.
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Figure 16: Exact values and quadratic approximation of P(s) for n = 6, ¢ = 0°, and ka = 60.
The endpoints are s; = 0, s; = 60°, s3 =80°, s4 = 90°, ss = 105°, s¢ = 135°, and s7 = 180°.
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Figure 17: Exact and approximate NU TE far-field pattern for ka = 60 and n = 4, n = 6, and
n = 8. The endpoints are s; = 7(j — 1)/n; 0° < ¢ < 360°. :
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Figure 18: Exact and approximate NU TE far-field pattern for ka = 60 andn =4, n =6, and
1 — 8. The endpoints are s; = 7(j — 1)/n; 00 < ¢ < 110°.

Future work could determine the optimal set of endpoints s; as a function of the far-field angle
of observation. By making these endpoints depend on the far-field angle, one could probably
increase the accuracy of the computed ILDC’s and, at the same time, reduce the number: of
segments.

Having demonstrated the validity of the quadratic approximations for the amplitude A(s)
and phase P(s), we can now calculate the far field that results from these approximations using
(60) and (61). For the above example of a TE plane wave incident on a circular cylinder, the NU
far-field pattern is shown in Figures 17 and 18. In these figures, the exact NU far-field pattern is
shown together with the NU far-field patterns obtained using n = 4,n=6,andn =38 integration
subintervals. The exact far-field pattern in these figures is obtained by numerically integrating
the NU current shown in Figures 9 and 10.

Let us compare the far-field patterns obtained when the number of segments are n = 4,n =6,
and n = 8, and the endpoints are given by s; = 7(j — 1)/n. We notice that, except in the region
around ¢ = 20°, the results obtained with n = 4 are very accurate. It is almost impossible
to distinguish the exact result from the result obtained with n = 8, and we conclude that for
ka = 60 it is sufficient to use n =6 equally spaced endpoints.

The numerical examples in this section show that with the integration technique presented in
Section 3.1, one can accurately compute the radiated fields using segments as large as 5. This
is a significant improvement over standard current integrations that usually use segments of the

order of A/6.
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Figure 19: Three dimensional scatterer illuminated by a plane wave.

4 The Use of the ILDC'’s for a 3D Scatterer

In this section we show how the ILDC’s for a convex cylinder are applied to calculate the scattered
far field of a 3D scatterer. In applications the PO field will generally be known, and what is
desired is the scattered field due to the NU currents on the 3D scatterer in the vicinity of its
shadow boundary. The total scattered field is then obtained by adding the NU scattered field to
the PO field. Consider a 3D scatterer with a smoothly varying radius of curvature illuminated
by a plane wave (see Figure 19). The illuminated and shadowed portions of the surface are
separated by the shadow boundary curve on the surface of the scatterer. Consider a point P
on the shadow boundary and generate a curve C' on the surface of the scatterer through P
motivated by the behavior of the currents on the surface. In the shadow region, C is the geodesic
emanating from P in the direction of the illuminating plane wave — the curve followed by the
currents — while in the illuminated region where the currents are determined locally, C is simply
the intersection of the surface with the plane through P perpendicular to the shadow boundary.
A 2D convex cylindrical (in general not circular-cylindrical) surface can then be generated by
passing straight lines (generators) through each point on C parallel to the shadow boundary at
P. Now generate a curve C’ through P on the cylindrical surface in the same way that C was
generated on the surface of the 3D scatterer. Assume that the radius of curvature of the 3D
scatterer is large in the direction parallel to the shadow boundary at P for points on the geodesic
part of C, especially in the vicinity of P. Then the geodesic portion of C in the vicinity of P
will be closely approximated by the geodesic portion of C’ (a generalized helical curve on the
convex cylindrical surface making a constant angle with its generators), and the ILDC’s of the
cylindrical surface at P will be a good approximation to the fields radiated by the NU currents
- on a differential strip of the 3D scatterer’s surface containing C. The procedure for obtaining the
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ILDC’s corresponding to the point P on the shadow boundary of the 3D scatterer is repeated for
all points on the shadow boundary, and the ILDC’s then integrated along the shadow boundary
to obtain an approximation to the far field radiated by the NU currents on the 3D scatterer.

It should be noted that a creeping wave geodesic on the surface of the actual scatterer will
in general diverge from the corresponding helical creeping wave geodesic on the approximating
convex cylinder surface as the distance from the launching shadow boundary point increases.
However the exponential decay of the creeping waves (see Eqs. (24) and (45)) insures that the
major contribution to the diffracted far field comes from the current on the portion of the geodesic
close to the shadow boundary. Here the generalized helical geodesic can be expected to be a
good approximation to the actual creeping wave geodesic, especially, if as assumed, the radius of
curvature of the actual 3D scatterer is large in the direction parallel to the shadow boundary for
points on the geodesic close to the launching shadow boundary point. An important consequence
of this concentration of the creeping wave current in the vicinity of the shadow boundary is that
the major ILDC contribution to the far field is in the forward direction, since the field in this
region can be viewed as due to the shedding of the creeping waves along rays tangential to the
scatterer at points close to the shadow boundary.

4.1 Calculation of the Fields Scattered by a Sphere

As an application of the NU ILDC’s for the shadow boundary of the PEC circular cylinder, we
calculated the far field of a PEC sphere illuminated by a plane wave by adding the integral of
the ILDC for a cylinder to the PO field of the sphere, and compared the result to the exact
scattered far field of the sphere as obtained from the Mie series solution. The sphere, of radius
a, is assumed centered at the origin of a Cartesian coordinate system and illuminated by a plane
wave propagating from above in the negative z-direction. The shadow boundary of the sphere is
thus a circle of radius « in the z = 0 plane. A circular cylinder of radius a, enclosing the sphere,
whose axis lies in the plane z = 0, will be tangent to the sphere along the circle of radius a,
normal to the cylinder axis, with its center at the origin. Hence, a strip of the sphere’s surface
of constant equal width on either side of the meridian defined by ¢ = constant coincides in the
limit, as the width of the strip shrinks to zero, with an azimuthal differential strip of surface
of the enclosing cylinder. As the cylinder is rotated around the z-axis the entire surface of the
sphere is obtained. Thus the far field of the sphere can be obtained by adding the integral of the
NU-current ILDC of the cylinder to the PO far field of the sphere, as the cylinder axis is rotated
from ¢ = 0 to ¢ = 2x. (It should be noted that an error is introduced in this approximation
procedure by the fact that the differential strips of cylinder surface overlap in the vicinity of the
poles of the sphere as the cylinder is rotated. This overlap is concentrated in the “polar” regions
of the sphere, however, and if the radius of the sphere is large the NU currents will decay rapidly
away from the shadow boundary so that the error attributable to the overlap of the differential
strips can be expected to be small.

In Figure 20 we show the scattered H-plane far field for a sphere of size ka = 60 illuminated
by a plane wave obtained by the method of ILDC’s, along with the exact field obtained from
the Mie series. The back and forward scatter directions correspond to § = 0° and 6 = 180°,
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Figure 20: Amplitude of scattered H-plane far field of sphere, ka = 60, illuminated by a plane
wave; 0° < 0 < 180°.

respectively. The detail of Figure 20 for 130° < 6 < 180° is shown in Figure 21. It can be seen
that a significant improvement upon the accuracy of the PO scattered field is obtained by adding
the integral of the circular cylinder NU current ILDC to the PO field of the sphere. A similar
result was obtained for the E-plane scattered far field pattern. Calculations for spheres smaller
than ka = 60 have shown that the ILDC’s significantly enhance the accuracy of the PO far field
for spheres as small as ka = 20.

5 Conclusions

The nonuniform currents excited in the vicinity of the shadow boundary of a PEC object can
contribute significantly to the total scattered far field of the object. The method of ILDC’s is
an important technique for calculating this NU far field which, added to the PO field, gives a
considerably more accurate approximation to the total scattered far field than does the PO far
field alone. The approach taken in this report to obtain ILDC’s for the shadow boundary of
a PEC 2D convex cylinder of general cross-section is to integrate the product of the free-space
Green’s function and the NU currents over a strip of surface of the 2D cylinder of differential
width, transverse to the shadow boundary. Accurate and rapidly calculable Fock approximations
to the NU currents are obtained and used. For circular and parabolic cylinders these NU current
approximations are validated numerically. The integration required to obtain the ILDC’s is itself
performed rapidly by using quadratic polynomial approximations of both the amplitude and
unwrapped phase of the integrand of the radiation integral, thereby enabling the integration to be
performed in closed form involving Fresnel functions. Examples are given of the approximations
of both the NU currents and the integrand of the radiation integral. As an application of this
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Figure 21: Amplitude of Scattered H-plane Far Field of Sphere, ka = 60, [lluminated by a Plane
Wave; 130° < 6 < 180°.

method of obtaining ILDC’s for convex PEC cylinders, the ILDC’s of a PEC circular cylinder are
obtained and integrated over the shadow boundary of a PEC sphere illuminated by a plane wave
to obtain the NU current far field. This field, added to the PO far field, is shown to considerably
improve upon the accuracy of the PO approximation of the exact total scattered far field of the

sphere.
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Appendix
Closed-Form Expressions for an Integral

In this appendix we present closed-form expressions for the integral

b .
I(co,c1, €2, €3,C4,C5,0,D) = / (cos® + 15 + cy)e s testes) g (70)

a

occurring in the expression (61). We assume that co, ¢;, and ¢, are complex and that cs, ¢4, Cs,
a, and b are real.

Case I: c3 >0
Integration by parts shows that

1Co Cq —i(cab2 Cy — 2
I(co,c1, €2, €3,€4,C5,0,0) = -— [(b-l- ——) g ileab Fesbres) _ (a + —) e~ilee +°4a+°5)]

2¢c3 2¢c3 92cs
+ 2 (Cl — C_Ofi) [e—i(csb2+c4b+cs) _ e_i(63a2+c4a+05)]
2¢3 c3
2
- C1C4 CoCy
2ic; 23 2z ) A 71
<2ZC3 2¢3 ot 4c§) (71)
where
A= [T gmiles—ci/(4eo)] [Q(z) — Qz.)], (72)
2C3
_ 263{ C4 } _ /2c3{ 4 }
Ty = T a + 2C3 ) Ty = - b + 2c3 , (73)
and

O(z) = /0 " emint 2 gy (74)

is a Fresnel function. When |z,| and |z;| are large one can substitute the large-argument ap-
proximation for the Fresnel function [20, pp. 301-302]

Q(z) ~ sign(z)

1—3 . 1 . .
- 4 4 [_Z_ s __3_2_ + O($_7)] 6—171'1'2/2, |$| — 00 (75)

rr wiz3  wizd

into (72) to get

2 1 1 3 (b2 1 1 3 (a2
_ = v ~i(cagb®+eabtes) _ | T _ —i({caza®+csatcs)
A= V2mes [(:cb + T} szg) e (ma + rzd 7r2:c5) e ’ ] - (76)

Numerical calculations show that it is advantageous to use (76) when |z,| > 10 and |z;| > 10.
For |z,| < 10 or |zp| < 10, the routine “frenel” of Numerical Recipes [21, pp. 248-250] can be

used.
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Case II: ¢35 < 0

The integral can in this case be obtained from
I(CO7 €1,C2,C3,C4,Cs, 0, b) = [I(637 C’{, C;, —C3, —C4, —Cs, Q, b)]* (77)

where * indicates complex conjugation. The integral on the right side of (77) can be computed
by the formulas given in Case I above.

Case [IL 0 < |e3] < 1

In this case it is advantageous to obtain I from

I
I(c07cl7c27 C3,C4,Cs5,0Q, b) = 1(607 Cy, Co, 0,64, Cs,Q, b) + 635;';(607 €y, Co, 0,c4,c5,a, b) (78)
where a1 )
—a—c—s-(co,cl,c2,0,c4,c5,a,b) = —z'/ s%(cos® + 15 + ¢3) eiesstos) g, (79)

The integral can be easily evaluated in closed form by integrating by parts or, more simply, by
using a symbolic-integration computer program.

Case IV:c3=0,¢4 #0
A straightforward calculation shows that

b2 b 2¢ob 2 .
I(co, 12,0, cayc5, a, b) _ [_Co +'Cl + ¢ + Co 2+ (5] n ig] g~ ileabtes)
ZC4 C4 ZC4

_ |:_Coa,2 +.Cla —+ ¢ + 2C0a + (&1 + zigjl e—i(C4a+Cs). (80)

icy c2 ics

Case Viez=0,¢, =0
A straightforward calculation shows that

1 1 .
I(ep,1,¢2,0,0,¢5,a,b) = [gco(b3 —ad®) + 501(62 —a®) +c(b— a)} e . (81)

Equation (66) implies that the quantities e=#(s#*+es¥2s) and e=i(cs¥ +esb+s) occurring in many
of the expressions of this section, simply equal e~*F(®) and e~"P®), respectively.
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